Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation.
نویسندگان
چکیده
The engraftment capacity of bone marrow-derived mesenchymal cells was investigated in 41 patients who had received a sex-mismatched, T-cell-depleted allograft from human leukocyte antigen (HLA)-matched or -mismatched family donors. Polymerase chain reaction (PCR) analysis of the human androgen receptor (HUMARA) or the amelogenin genes was used to detect donor-derived mesenchymal cells. Only 14 marrow samples (34%) from 41 consenting patients generated a marrow stromal layer adequate for PCR analysis. Monocyte-macrophage contamination of marrow stromal layers was reduced below the levels of sensitivity of HUMARA and amelogenin assays (5% and 3%, respectively) by repeated trypsinizations and treatment with the leucyl-leucine (leu-leu) methyl ester. Patients who received allografts from 12 female donors were analyzed by means of the HUMARA assay, and in 5 of 12 cases a partial female origin of stromal cells was demonstrated. Two patients who received allografts from male donors were analyzed by amplifying the amelogenin gene, and in both cases a partial male origin of stromal cells was shown. Fluorescent in situ hybridization analysis using a Y probe confirmed the results of PCR analysis and demonstrated in 2 cases the existence of a mixed chimerism at the stromal cell level. There was no statistical difference detected between the dose of fibroblast progenitors (colony-forming unit-F [CFU-F]) infused to patients with donor- or host-derived stromal cells (1.18 +/- 0.13 x 10(4)/kg vs 1. 19 +/- 0.19 x 10(4)/kg; P >/=.97). In conclusion, marrow stromal progenitors reinfused in patients receiving a T-cell-depleted allograft have a limited capacity of reconstituting marrow mesenchymal cells.
منابع مشابه
تاثیر آشیانههای جفتی شبیهسازی شده با داربست پلی لاکتیک اسید در تکثیر سلولهای بنیادی خونساز مشتق از بافت جفت انسانی
Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملMesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 96 10 شماره
صفحات -
تاریخ انتشار 2000